
Automatic Assignment of Absolute Configuration from 1D NMR
Data
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Opposite enantiomers exhibit different NMR properties in the presence of an external common
chiral element, and a chiral molecule exhibits different NMR properties in the presence of external
enantiomeric chiral elements. Automatic prediction of such differences, and comparison with
experimental values, leads to the assignment of the absolute configuration. Here two cases are
reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the
corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral
secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation
neural networks were trained to predict the sign of the difference between chemical shifts of opposite
stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the
input, and to give the NMR property as the output. In the second application, similar neural
networks were employed, but the property to predict was the difference of chemical shifts in the
two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were
obtained in both applications concerning the sign of the chemical shifts differences. Additionally,
with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was
quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental
values.

1. Introduction

Determination of absolute configuration of new chiral
compounds is usually the last step of structure elucida-
tion. While the molecular formula, the connection table,
and the relative stereochemistry of organic compounds
can be normally deduced from mass spectrometry, IR,
and NMR spectroscopy of pure samples, the assignment
of absolute configuration from two enantiomeric pos-
sibilities is more problematic. Following the work of
Bijvoet,1 crystallographic methods can unequivocally
assign absolute configuration, but they require at least
a crystalline sample. Common alternatives include (a)
chemical transformations leading to a compound of

known configuration, (b) attachment of a chiral block of
known configuration for further determination of relative
stereochemistry, (c) interpretation of chiroptical proper-
ties,2,3 and (d) interpretation of NMR behavior in the
presence of chiral solvating agents.4,5

In the absence of an external chiral element, opposite
enantiomers exhibit the same properties in NMR spec-
troscopy. But the situation changes with a chiral solvat-
ing agent or after covalent bonding to a standard chiral

(1) Bijvoet, J. M.; Peerdeman, A. F.; Vanbommel, A. J. Determina-
tion of the absolute configuration of optically active compounds by
means of X-rays. Nature 1951, 168, 271-272.

(2) Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism:
Principles and Applications, 2nd ed.; John Wiley & Sons: New York,
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(3) Polavarapu, P. L. Optical rotation: recent advances in determin-
ing the absolute configuration. Chirality 2002, 14, 768-781.

(4) Seco, J. M.; Quinoa, E.; Riguera, R. The assignment of absolute
configuration by NMR. Chem. Rev. 2004, 104, 17-117.

(5) Wenzel, T. J.; Wilcox, J. D. Chiral reagents for the determination
of enantiomeric excess and absolute configuration using NMR spec-
troscopy. Chirality 2003, 15, 256-270.
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block (transformation of enantiomers into diastereoiso-
mers).4,5 In those cases, opposite stereoisomers can be
discriminated by NMR spectroscopystheir NMR proper-
ties become different. It should be possible to build
models that correlate those properties with the absolute
configuration. If reliable models are established, they can
strongly support the assignment of absolute configura-
tion, particularly if predictions can be simultaneously
obtained on the basis of different techniques/models.6

Covalent bonding of enantiomers to homochiral Mosher
acid is a common technique to discriminate enantiomers
by NMR spectroscopy and to measure the enantiomeric
excess. Kelly compiled an excellent data set of Mosher
esters of secondary alkanols, including the 1H NMR
chemical shifts of the methoxide group of the Mosher
esters.7 Some rules were proposed to assign the absolute
configuration of alkanols from the comparison between
the chemical shifts of the Mosher esters of opposite
enantiomers.7 A certain configuration of the chiral carbon
atom is associated with the enantiomer yielding the (R)-
Mosher ester with higher chemical shift. However, this
rule requires some considerations about conformation,
subjective decisions on inverting or not CIP rules, and it
has been tested more for explanation than for prediction.
It is therefore hardly suitable for automatic implementa-
tion. In the first part of this paper, we present an
automatically developed model that predicts if a given
enantiomer, after esterification with (R)-Mosher acid, has
a higher or lower chemical shift (of the Mosher acid
methoxide group) than its enantiomer. Such a model can
be used to assign the absolute configuration from the
NMR chemical shifts of the two enantiomers. The ap-
proach is based on counterpropagation neural networks
(CPG NNs), which are trained with chirality codes8 of
the enantiomers. The chirality codes are calculated from
the molecular structure and represent the molecular
chirality.9,10 Such a numerical fixed-length representation
of the molecular chirality is required for input to a NN.
The NN learns the relationship between the chirality
codes of the chiral structures and the corresponding NMR
properties, from a set of training examples. It is then able
to make predictions for an independent test set.

A second investigation is presented on the relationship
between the chiral molecular structure of secondary
alkanols and their 13C NMR properties in chiral deuter-
ated solvents. This study uses a database produced by
Kishi and co-workers11-13 with the 13C NMR chemical

shifts of atoms adjacent to the chiral hydroxymethine
center, taken in (R,R)-BMBA-p-Me and (S,S)-BMBA-p-
Me chiral solvents. Here we report the estimation of the
difference between the chemical shifts of a given carbon
atom in the two enantiomeric solvents by counterpropa-
gation neural networks. The neural networks receive as
input a representation of the atom (an atomic chirality
code) and gives as output the difference of its chemical
shift in the (R,R)-BMBA-p-Me and (S,S)-BMBA-p-Me
solvent. For the practical assignment of absolute config-
uration to a pair of enantiomers, the difference of the
experimental chemical shifts in the enantiomeric solvents
would be compared with the predicted shifts for both
enantiomers.

2. Methodology

2.1. Data Sets. Two data sets were investigated. The first
data set consists of a series of 40 secondary alkanols (1-40)
and their enantiomers, which are the alkanol moieties of
R-methoxy-R-(trifluoromethyl)phenylacetic acid (MTPA or Mosh-
er acid) esters retrieved from the literature.7 If the 1H NMR
chemical shift of the methoxy group of (R)-MTPA ester of an
alkanol was higher than that of the alkanol enantiomer, the
chemical shift difference for this enantiomer is considered to
be positive, while the chemical shift difference for the opposite
enantiomer is considered negative. Thus, the absolute config-
uration of the alkanol is associated with a chemical shift
difference. Figure 1 shows the enantiomers of the data set
exhibiting a positive difference of chemical shifts. Figure 2
illustrates the procedure for the determination of the chemical
shift difference. The 40 enantiomeric pairs were divided into
a training set and a test set. The test set consists of 20
molecules (3, 8, 14, 19, 23, 25, 26, 31, 35, 40, and their
enantiomers) that were chosen to cover a variety of skeletons
and were not used for trainingsthe training set was composed
of the remaining 60 compounds.

The second data set is based on 24 chiral alcohols (41-64)
for which 13C NMR spectra were taken in chiral bidentate
solvents (R, R)- and (S, S)-BMBA-p-Me. The structures and
chemical shift differences ∆δRR-SS ) δ(R,R) - δ(S,S) for carbon
atoms adjacent to the hydroxymethine unit were retrieved
from the literature11-13 and are shown in Figure 3. The
chemical shift differences ∆δRR-SS have opposite signs for
corresponding carbon atoms in opposite enantiomers. The data
set includes non-zero ∆δRR-SS values for 47 carbon atoms in
24 chiral alcohols. Therefore, 94 atoms (47 carbon atoms in
each of the two series of enantiomers) were investigated. They
were partitioned into a test set of 20 atoms (from the
compounds 42, 48, 54, 58, 62, and their enantiomers) and a
training set consisting of the remaining 74 atoms.

It must be emphasized that in both studies the two enan-
tiomers of each enantiomeric pair were always included
together either in the training set or in the test set.

2.2. Conformation-Independent Chirality Code (CICC).
We have introduced a conformation-independent chirality code
(CICC) that quantitatively describes the stereochemical situ-
ation at chiral centers.8 Here only a brief explanation of the
descriptors is given. First, a value of eijkl was defined through
eq 1 that considers atoms i, j, k, and l, each of them belonging
to a different ligand of a chiral center.

(6) For a review on chromatography in the context of determination
of absolute configuration, see: Roussel, C.; Rio, A. D.; Pierrot-Sanders,
J.; Piras, P.; Vanthuyne, N. J. Chromatogr. A 2004, 1037, 311-328.

(7) Kelly, D. R. A new method for the determination of the absolute
stereochemistry of aromatic and heteroaromatic alkanols using Mosh-
er’s esters. Tetrahedron: Asymmetry 1999, 10, 2927-2934.

(8) Aires-de-Sousa, J.; Gasteiger, J. A new description of molecular
chirality and its application to the prediction of the preferred en-
antiomer in stereoselective reactions. J. Chem. Inf. Comput. Sci. 2001,
41, 369-375.

(9) Aires-de-Sousa, J.; Gasteiger, J. Prediction of enantiomeric
selectivity in chromatography. Application of conformation-dependent
and conformation-independent descriptors of molecular chirality. J.
Mol. Graph. Model. 2002, 20, 373-388.

(10) Aires-de-Sousa, J.; Gasteiger, J.; Gutman, I.; Vidović, D. Chiral-
ity codes and molecular structure. J. Chem. Inf. Comput. Sci. 2004,
44, 831-836.

(11) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Toward the creation of
NMR databases in chiral solvents: bidentate chiral NMR solvents for
assignment of the absolute configuration of acyclic secondary alcohols.
Org. Lett. 2002, 4, 411-414.

(12) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Application of chiral
bidentate NMR solvents for assignment of the absolute configuration
of alcohols: scope and limitation. Tetrahedron Lett. 2003, 44, 7489-
7491.
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ai is a property of atom i, such as atomic charge, and rij is
a distance between atoms i and j. To consider the 3D structure
but make the chirality code independent of a specific con-

former, rij was taken as the sum of the bond lengths between
atoms i and j on the path with the minimum number of bond
counts.

Furthermore, a chirality sign, sijkl, was defined that can
attain values of +1 or -1. For the computation of sijkl, atoms
i, j, k, and l are ranked according to decreasing atomic property
ai (when the property of two atoms is the same, the properties
of the atoms directly bonded to the chiral center, A, B, C, or
D, and belonging to the same two ligands, are used for
ranking). Then the 3D coordinates of A are used for atom i,
those of B for j, those of C for k, and those of D for l. The first
three atoms (in the order established by ranking) define a
plane. If they are ordered clockwise and the fourth atom is
behind the plane, the chirality sign, sijkl, obtains a value of
+1. If the geometric arrangement is opposite, sijkl obtains a
value of -1.

The value of eijkl embodies the conformation-independent
three-dimensional arrangement of the atoms of the ligands of
a chirality center in distance space and thus cannot distinguish
between enantiomers. This distinction is introduced by the
descriptor sijkl.

(13) Kobayashi, Y.; Czechtizky, W.; Kishi, Y. Complete stereochem-
isty of tetrafibricin. Org. Lett. 2003, 5, 93-96.

FIGURE 1. Data set of secondary chiral alkanols giving rise to (R)-MTPA ester derivatives with higher 1H NMR chemical shifts
(MeO group) than their enantiomers.

FIGURE 2. Definition of chemical shift difference (∆δ) after
esterification with (R)-MTPA.

Zhang et al.
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The two values, e and s, calculated for all the combinations
of four atoms i, j, k, and l (each of the four atoms sampled
from a different ligand of a chiral center) are then combined
to generate a conformation-independent chirality code,
fCICC(u), using eq 2, where nA, nB, nC, and nD are the number
of atoms belonging to ligands A, B, C, and D, respectively:

fCICC(u) is calculated at a number of discrete points with
defined intervals to obtain the same number of descriptors,
irrespective of the size of the molecule. The actual range of u
used in an application is chosen according to the range of
atomic properties related to the range of observed interatomic
distances for the given molecules.

The number of discrete points of fCICC(u) determines the
resolution of the chirality code. b is a smoothing factor; in
practice b controls the width of the peaks obtained by a
graphical representation of fCICC(u) vs u.8

2.3. Conformation-Dependent Chirality Code (CDCC).
CDCC is a more general conformation-dependent description
of molecular chirality.9,10 One main difference is that chiral
carbon atoms are now not explicitly considered, and combina-
tions of any four atoms are now used, independently of the

existence or not of chiral centers, and of their belonging or
not to ligands of chiral centers. Every combination of four
atoms (A, B, C, and D) is characterized by two parameters, e
and c. As for the CICC, e is a parameter that depends on
atomic properties and on distances, and is calculated by eq 1,
with rij again being the sum of bond lengths between atoms
on the path with minimum number of bond counts. c is now a
geometric parameter (dependent on conformation) that takes
real values, and it takes opposite values for the correspondent
set of four atoms in opposite enantiomers.

For the computation of c, atoms A, B, C, and D are ranked
according to decreasing atomic property (and renamed accord-
ing to ranking in the order i, j, k, and l). When the atomic
property of two atoms is the same, they are ranked according
to a set of rules based on geometric arguments and atomic
properties (the rules are described in ref 9). If a set of four
atoms is an achiral set, i.e., it is superposable on its mirror
image, then it is not further considered. The property, ai, of
an atom should have values that allow one to distinguish
between nonequivalent atoms. For that purpose we have
selected partial atomic charges,14,15 or polarizabilities,16,17

calculated by PETRA18 because this software rapidly assigns

(14) Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital
electronegativitysa rapid access to atomic charges. Tetrahedron 1980,
36, 3219-3228.

FIGURE 3. Data set of chiral alkanols and the differences of 13C NMR chemical shifts of carbon atoms adjacent to the
hydroxymethine unit in enantiomeric solvents (R,R)- and (S,S)-BMBA-p-Me.
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highly selective values to the atoms of large molecules and
sizable datasets. Furthermore, we decided to rank atoms using
atomic physicochemical properties since these are expected to
be of much higher influence on the properties of molecules than
other conventionally used values (such as atomic numbers in
the CIP rules). For the applications described here, partial
atomic charges and effective polarizabilities were chosen
because of their expected influence on the NMR chemical shift.

c is defined for each combination of atoms i, j, k, and l by eq
3, where xj, yj, and zj are the coordinates of atom j in the
Cartesian system defined in such a way that atom i is at
position (0,0,0), atom j lies on the positive side of the x axis,
and atom k lies on the xy plane and has a positive y coordinate.
On the right-hand side of eq 3, the numerator represents the
volume of a rectangular prism with edges xj, yk, and |zl|, while
the denominator represents the surface of the same solid. If
xj, yk, or zl have a very small absolute value, the set of four
atoms is only slightly deviating from an achiral situation. That
is reflected in c, which would then take a small absolute value.
c is conformation-dependent because it is a function of 3D
atomic coordinates.

The two values, eijkl and cijkl, calculated for all combinations
of four atoms, are then combined to generate a conformation-
dependent chirality code, fCDCC, using eq 4, where n is the
number of atoms in each molecule and c introduces the
conformation dependence:

fCDCC(u) is calculated at a number of discrete values of u,
with defined intervals to obtain the same number of descrip-
tors, irrespective of the size of the molecule. As for the CICC
code, the actual range of u used in an application is chosen
according to the range of atomic properties related to the range
of observed interatomic distances for the given molecules.

2.4. Atomic Conformation-Dependent Chirality Code
(aCDCC). The chirality code CDCC described in section 2.3
is a molecular code; i.e., the code is the representation of the
whole molecule. Introduction of an atomic chirality code is
necessary to account for local chirality around an atom, which
is relevant for modeling atomic properties such as the NMR
chemical shift. An atomic code means that every atom rather
than the whole molecule has its own chirality code. Two atomic
codes derived from CDCC are introduced.19 For the calculation
of the atomic chirality code for an atom a, the same eq 4 is
used, but now only combinations of four atoms including atom
a are considered, i.e., i ) a or j ) a or k ) a or l ) a.

Thus, the sum of atomic chirality codes aCDCC for all the
atoms in a molecule equals four times the molecular chirality
code CDCC.

To further emphasize the special role of atom a in eq 4, a
second version of the atomic chirality code was put forwards
aCDCC_2. In this case, the highest priority among the four
atoms of any combination is assigned to atom a, for the
calculation of cijkl. This can be represented by changing eq 4
into eq 5:

An example of an atomic chirality code aCDCC_2 for the
enantiomers of 4-octanol (41) is shown in Figure 4.

A 3D molecular structure as well as atomic properties are
required for calculating the chirality code. The Cartesian
coordinates of the atoms were calculated from the connection
tables of the molecules by the 3D structure generator
CORINA.20-23 The physicochemical atomic properties (partial
atomic charge and effective polarizability) were calculated
using fast empirical methods implemented in the program
package PETRA 3.11,18 charges by the PEOE method,14,15 and
effective polarizabilities by a published procedure.16,17 Chirality
codes were calculated with a computer program especially
developed for this task. The program was written using the C
programming language and, for the experiments described
here, was compiled for the Windows platform.

2.5. Counterpropagation Neural Network. To model the
relationship between the chirality codes and the corresponding
chemical shift differences counterpropagation neural networks
(CPG NN)24 were used. CPG networks were chosen because
they are useful for the modeling of complex and nonlinear
relationships and they yield maps that can be visually
interpreted.

The input data for a CPG network are stored in a two-
dimensional grid of neurons, each containing as many ele-
ments (weights) as there are input variables. In the investi-
gations described in this paper the input variables are chirality
codes. In Figure 5 the upper block represents this part of the
CPG network, which is basically a Kohonen25 network, or self-
organizing map (SOM). The output data (in this case the
chemical shift differences) are stored in a second layer that
acts as a look-up table.

Before the training of a CPG network starts, random
weights are generated. During the training, each individual
object (chirality code) is mapped into that neuron of the
Kohonen layer (central neuron or winning neuron) that
contains the most similar weights compared to the input data
(chirality codes). The weights of the winning neuron are then
adjusted to make them even more similar to the presented
data, and the weight of the corresponding output neuron is
adjusted to become closer to the experimental chemical shift
difference. The neurons in the neighborhood of the winning
neuron are also corrected, the extent of adjustment depending
on the topological distance to the central neuron. The network
is trained iteratively, i.e., all the objects of the training set

(15) Gasteiger, J.; Saller, H. Calculation of the charge distribution
in conjugated systems by a quantification of the resonance concept.
Angew. Chem., Int. Ed. Engl. 1985, 24, 687-689; Angew. Chem. 1985,
97, 699-701.

(16) Gasteiger, J.; Hutchings, M. G. Empirical models of substituent
polarisability and their application to stabilisation effects in positively
charged species. Tetrahedron Lett. 1983, 24, 2537-2540.

(17) Gasteiger, J.; Hutchings, M. G. Quantification of effective
polarisability. Applications to studies of X-ray photoelectron spectros-
copy and alkylamine protonation. J. Chem. Soc., Perkin Trans. 2 1984,
559-564.

(18) http://www2.chemie.uni-erlangen.de/software/petra/
(19) For a quantitative measure of atomic chirality see: Moreau,

G. Atomic chirality, a quantitative measure of the chirality of the
environment of an atom. J. Chem. Inf. Comput. Sci. 1997, 37, 929-
938.

(20) Sadowski, J.; Gasteiger, J. From atoms and bonds to three-
dimensional atomic coordinates: automatic model builders. Chem. Rev.
1993, 93, 2567-2581.

(21) Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation
of 3D-atomic coordinates for organic molecules. Tetrahedron Comput.
Methodol. 1992, 3, 537-547.

(22) Sadowski, J.; Rudolph, C.; Gasteiger, J. The generation of 3D-
models of host-guest complexes. Anal. Chim. Acta 1992, 265, 233-
241.

(23) Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of automatic
three-dimensional model builders using 639 X-ray structures. J. Chem.
Inf. Comput. Sci. 1994, 34, 1000-1008.

(24) For detailed description of neural networks, see: (a) Gasteiger,
J.; Zupan, J. Neural networks in chemistry. Angew. Chem., Int. Ed.
Engl. 1993, 32, 503-527; Angew. Chem. 1993, 105, 510-536. (b)
Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug
Design, 2nd ed.; Wiley-VCH: Weinheim, 1999.

(25) Kohonen, T. Self-Organization and Associative Memory, 3rd ed.;
Springer: Berlin, 1989.
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are presented several times, and the weights are corrected,
until the network stabilizes. Note that chemical shift differ-
ences are not used in determining the winning neuron.

After the training, the CPG NN is able to predict the
chemical shift difference on input of an object represented by
its chirality code. The winning neuron is chosen and the
corresponding weight in the output layer is used for prediction
(Figure 5).

2.6. Selection of Variables Using Genetic Algorithms.
Chirality codes are spectrum-like representations with a
number of descriptors that depends on the range and resolu-
tion. Some of the descriptors may be not relevant for our
purposes, and can even introduce noise. Models with few
descriptors are usually preferred for increased robustness.
Here we used genetic algorithms for the selection of variables

produced by the chirality codes. Genetic algorithms simulate
the evolution of a population, where each individual of the
population represents a subset of descriptors and its fitness
is assessed by the ability to generated accurate models.
Although thorough descriptions of the technique can be easily
obtained from several sources,26 an overview of the method is
here included.

Each individual in the population represents a subset of
descriptors and is defined by its chromosome. A chromosome
has as many genes as there are possible descriptors (code
length of chirality code)seach gene corresponds to one descrip-
tor. One gene takes a value of 1 if the corresponding descriptor
is included in the subset, and it takes a value of 0 if the
descriptor does not belong to the subset represented by the
individual (Figure 6a).

At the beginning of the evolution, the chromosomes are
randomly generated. In order that the number of genes with
value 1 is kept relatively low (small subsets of descriptors)
the probability of generating 1 for a gene was set (randomly
for each new chromosome) between 0 and 0.4.

A population of individuals is allowed to evolve over a
number of generations. In each generation, half of the popula-
tion die, and the other half survive (the fittest individuals).
Each of the surviving individuals mates with another (ran-
domly chosen) surviving individual, and two new offspring are
generated. The chromosomes of the offspring result from
crossover of their parents’ chromosomes, followed by random
mutation (Figure 6b,c). The population of the next generation
consists of the new offspring and their parents.

Crossover occurs at a randomly chosen single point. Muta-
tion is allowed to occur at every gene of the new offspring with
a random probability. The probability of mutation 0f1 is set
for each individual (randomly) between 0 and 5%. The prob-
ability of mutation 1f0 is set for each individual (randomly)
between 4 and 6 times higher than the probability of mutation
0f1.

The evaluation (scoring) of each chromosome is made by a
CPG neural network that uses the subset of descriptors

(26) Homeyer, A. V. Evolutionary Algorithms and their Applications
in Chemistry. In Handbook of Chemoinformatics, Gasteiger, J., Engel,
J., Ed.; Wiley-VCH: New York, 2003; Vol. 3, pp 1239-1280.

FIGURE 4. (a) Structure of (R)-4-octanol and (S)-4-octanol with chemical shift differences in NMR chiral solvents (R,R)-BMBA-
p-Me and (S,S)-BMBA-p-Me. (b) Atomic chirality codes aCDCC_2 of carbon 5 of (R)-4-octanol and (S)-4-octanol.

FIGURE 5. Representation of a counterpropagation neural
network (CPG NN). Every small box of the network block
represents a weight. The CPG NN is trained by iterative
presentation of objects (chirality code and the corresponding
observed NMR chemical shifts difference). After the training,
the NN is able to predict the chemical shift difference on input
of a chirality code.
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encoded in the chromosome for predicting chemical shift
differences. This CPG NN works in a similar way to those
described above. A selection of the chirality code values
(encoded by the chromosome) is fed to the NN obtaining a
chemical shift difference as the output. The NN is trained with
the training set, and the score of one chromosome (fitness
function) is the root-mean-square of errors for the predictions
obtained for the training set. Chromosomes giving lower errors
are considered to be fitter than those giving higher errors and
are selected for mating.

3. Results and Discussion

3.1. Prediction of Absolute Configuration of Sec-
ondary Alcohols from NMR Data of Their Mosher
Esters. The 80 alcohols (40 enantiomeric pairs) were
encoded by chirality codes (CDCC or CICC). These codes
can be generated with different options such as resolu-
tion, range of u, smoothing parameter, atomic properties,
and types of atoms considered. By changing these vari-
ables, 199 different codes were generated and screened.
The different codes were calculated with a code length
of 51 values by using (a) the partial atomic charge or
effective polarizability as atomic property (b) all types of
atoms or not considering hydrogen atoms; (c) values of u
in the interval [-r, +r] with r varying from 0.030 to 0.200
e2 Å-1 for partial atomic charges or in the interval [0,
+r] with r varying between 50 and 500 Å for effective
polarizabilities; (d) combinations of four atoms with
maximum interatomic path distances of 5, 8 or any
number of bonds; (e) the smoothing parameter b was set
to (code length/range of u)2. The 51-dimensional vectors
were normalized by their vector sum.

The experimental output for a given enantiomer was
set to +1 or -1 if its chemical shift difference is positive

or negative, respectively. As described in the Methodology
section, the chemical shift difference is calculated from
the chemical shifts of the MeO group in the (R)-MTPA
ester derivatives. A CPG NN size of 8 × 8 was trained
with the chirality codes and chemical shift differences of
60 alcohols (training set). The trained network was then
used to make predictions for the test set. If the output
value was positive, the alcohol was predicted to give rise
to a chemical shift higher than its enantiomer and vice
versa.

The quality of clustering in a CPG NN can be assessed
to a large extent by the number of correct predictions
(classifications) for the training set. We therefore chose,
as the best codes, those with higher number of correct
predictions for the training set without considering the
results for the test set. To reduce the impact of fluctua-
tions derived from the random values of the weights at
the outset of the training, and the random order by which
examples are presented during the training, five CPG
networks were trained independently, and the average
value of the five outputs was used as the output. Table
1 shows the best results obtained for the training set and
the number of codes that yielded these results. The
results are given separately for the codes using partial
atomic charges or effective polarizabilities, for codes
adopting CICC or CDCC algorithm, and for codes con-
sidering all the types of atoms or neglecting hydrogen
atoms. The best three results for the training set were
displayed in the last column of Table 1.

The chirality codes encoded by CICC with all types of
atoms and partial atomic charges could be found to be
the best code. It allowed for correct prediction of 58 out

FIGURE 6. (a) Chromosome defines a subset of descriptors
from the entire chirality code (descriptors d1-dn). (b) Mutation
of one gene. (c) Crossover between chromosomes of parents,
and the resulting chromosomes of the offspring.

TABLE 1. Prediction of NMR Behavior of 60 Mosher
Acid Derivatives by CPG NNs of Size 8 × 8 Trained on
the Basis of 199 Different Chirality Codes

atomic
property

hydrogen
considered

conformation-
independent

no. of
exptsa

correct
predictionss
best codesb

partial atomic no no 24 54 (4)
charge 53 (1)

52 (1)
no yes 24 52 (4)

50 (2)
49 (1)

yes no 24 52 (6)
51 (2)
50 (3)

yes yes 24 58 (1)
57 (1)
55 (2)

effective no no 23 52 (1)
polarizability 50 (1)

49 (1)
no yes 26 54 (1)

53 (1)
51 (3)

yes no 27 51 (2)
50 (2)
49 (1)

yes yes 27 56 (1)
55 (2)
53 (3)

a Different codes were tested with different ranges and different
limits for the maximum interatomic distance allowed within a set
of four atoms; b Number of correct predictions for the training
set of 60 compounds. The number of codes yielding the given result
is displayed in parentheses.

Zhang et al.

2126 J. Org. Chem., Vol. 70, No. 6, 2005



of 60 cases (the five individual networks gave 57, 57, 56,
56, and 57 correct predictions, respectively). When an
ensemble of five networks, trained with such a code, was
applied to the test set, all the 20 objects in the test set
were correctly predicted (individual networks giving 18,
20, 18, 18, and 20 correct predictions). The chirality code
was generated with partial atomic charges as the atomic
property, fCICC(u) was sampled at 51 evenly distributed
values of u between -0.030 and +0.030 e2 Å-1, combina-
tions of four atoms with maximum interatomic path
distances larger than eight were neglected, and all type
of atoms were considered. The results clearly show that
the approach followed for prediction of the sign of NMR
chemical shift difference was successful.

Figure 7 shows the surface of a CPG NN after being
trained with the best chirality code, and colored according
to the values of the weights in the output layer. The
network consists of a toroidal surface (grid) of neurons.
The map shows a characteristic region (in white) corre-
sponding to the enantiomers whose chemical shift dif-
ferences were positive, and a clearly distinct region for
the opposite enantiomers (colored with gray). The objects
of the test set were mapped into the same map, and were
labeled with their reference numbers (and with an “i”
when the experimental chemical shift difference is nega-
tive). It can be seen that all the test objects were correctly
classified (an object is classified as giving a positive
chemical shift difference if it activates a neuron with a
positive output weight and vice versa).

Further validation of the method was pursued with a
different test set consisting of molecules 18, 19, 20, 38,
40, and their enantiomers. These compounds exhibit
some substructural features that cannot be found in the
remaining 35 structures (the new training set). The
networks were trained using the best chirality code
previously found. Correct predictions were obtained for
9 out of the 10 cases. The results show that the chirality
codes/NN strategy was successful in the development of

automatic predictions of chiral NMR behavior from the
molecular structure, and revealed that the chirality codes
contain relevant information for that purpose. In the
application to compounds structurally different from
those of the training set, the model has shown good
robustness.

3.2. Prediction of Absolute Configuration of Chiral
Alcohols from NMR Data in Chiral Solvents (R,R)-
and (S,S)-BMBA-p-Me. Using the database of NMR
data in chiral solvents, the carbon atoms adjacent to
chiral centers were encoded by the atomic versions of
CDCC - aCDCC or aCDCC_2. A series of 90 different
codes were generated with a code length of 101 by using
(a) the partial atomic charge or effective polarizability
as the atomic property (b) all types of atoms or not
considering hydrogen atoms; (c) values of u in the interval
[-r, +r] with r varying from 0.030 to 0.200 e2 Å-1 for
partial atomic charges or in the interval [0, +r] with r
varying between 120 and 1000 Å for effective polariz-
abilities; (d) combinations of four atoms with maximum
interatomic path distances of 4, 6, or 8 bonds; (e) the
smoothing parameter b was set to (code length/range of
u)2.

The set of all codes comprise 94 objects (atoms)
characterized by 101 variables. Constant variables were
deleted and each variable was normalized.

If the sign of ∆δRR-SS (see Methodology) was positive,
a value of +1 was given to represent chemical shift
difference of this compound, and if it is negative, a value
of -1 was given. The chemical shift difference and the
chirality codes were submitted to CPG NNs of size 9 ×
9. For each chirality code, five independent networks
were trained with the training set and incorporated into
an ensemble of networks as in the first application. When
a trained network was applied to make predictions, a
positive value of the output was interpreted as a predic-
tion of a positive chemical shift difference for the atom
and vice versa.

The 90 chirality codes calculated with different options
were evaluated by the quality of their predictions for the
training set at the end of the training without considering
the results for the test set. The best three codes are shown
in Table 2. In assessing the quality of a code, not only
the average of the five independent predictions was
considered, but also the stability of the number of correct
predictions over the five independent networks. It can
be seen that the number of correct predictions with
aCDCC_2 code 24 (68 correct predictions for the training
set) is the same as for codes 28 and 1. However, code 24
is more stable than the other two and is therefore
preferred.

FIGURE 7. Representation of the output weights of a 8 × 8
CPG NN after training with 60 chiral alcohols encoded by
CICC descriptors. After the training, the 20 molecules of the
test set (3, 8, 14, 19, 23, 25, 26, 31, 35, 40, and their
enantiomers) were also mapped for classificationstheir labels
include an “i” if the experimental chemical shift difference is
negative.

TABLE 2. Prediction of NMR Behavior in Chiral
Solvents of Alkanols 41-64 and Their Enantiomers by
CPG NNs of Size 9 × 9 Using the Best Chirality Codes as
Input

code no. aCDCCa code no. aCDCC_2a

24 68 (64, 66, 65, 68, 66) 24 68 (69, 68, 68, 66, 68)
36 65 (64, 57, 62, 67, 59) 28 68 (66, 67, 62, 60, 63)
35 65 (56, 64, 60, 59, 60) 1 68 (60, 58, 60, 60, 63)
a Number of correct predictions for the training set (74 atoms).

The number of correct predictions obtained by the ensemble of
five CPG NNs is displayed together with the five individual results
(within parentheses).
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Code 24 was generated with (a) all types of atoms, i.e.
including hydrogen atoms; (b) partial atomic charge as
the atomic property; (c) value of u in the interval
[-r, +r] with r ) 0.200 e2 Å; (d) combination of four atoms
with maximum interatomic path distance of 4 bonds.

To obtain more compact, robust, and accurate models,
CPG neural networks were trained with subsets of code
24 descriptors, instead of all generated descriptors. The
selection of the subsets was obtained by genetic algo-
rithms as described in the Methodology section. CPG
NNs trained with the selected descriptors were compared
with the networks trained with all the descriptors. The
same network size, training set, and test set were useds
the results are displayed in Table 3.

Selection of descriptors has not significantly changed
the accuracy of predictions both for aCDCC and aCD-
CC_2, but yielded much smaller modelss8 descriptors
instead of 31 for aCDCC and 11 instead of 31 for
aCDCC_2.

Figure 8 shows the map of a CPG NN trained with
selected descriptors from aCDCC_2 code 24 and colored
according to the output weights. It reveals the trend for
the two classes of enantiomers to excite neurons in two
distinct regions (white and gray). The objects of the test
set were also mapped, predictions were obtained based
on the sign of the output value, and all the atoms were
correctly classified. It should be noted that the NN
recognized similarities between the enantiomers of the
same class (the chemical shift difference of an atom) even
though diverse structures were present.

Even with the best code (aCDCC_2 code 24), and
selected descriptors, there are four atoms in the training
set that are wrongly predicted (R carbon atoms on the
left side of the hydroxymethine unit of 50 and 51 in
Figure 3, and the corresponding carbon atoms in their
enantiomers). These get wrong predictions with all the
five independent networks. Significantly, they are also
exceptions to the empirical rule proposed by Kishi and
co-workers.11 Two of them, however, were correctly
predicted using the aCDCC code 24.

Conformation-dependent CDCC codes are based on
single 3D molecular models -rigid conformation. For
flexible molecules, more than one conformation is cer-
tainly relevant for NMR properties. This is probably the
reason the best found code is a rather localized codesit
is calculated only with combinations of four atoms with
interatomic distances up to four bonds. Within such local
environments, the universe of conformation diversity is
much reduced. A possible additional reason is obviously
the fact that chemical shifts basically depend on short-
range interactions.

The model incorporating the five networks can be used
to assign the absolute configuration from the NMR data
of unknown samples. For example, to assign the absolute
configuration to a sample of compound 42 with unknown
configuration, the following steps should be followed.
NMR spectra are taken in chiral solvents (R,R)- and
(S,S)-BMBA-p-Me. The differences between the chemical
shifts in the (R,R) and the (S,S) solvents are calculated
for the two carbon atoms adjacent to the hydroxymethine
chiral center. The differences are compared with the
predictions obtained by the model for the two possible
enantiomers of 42. The enantiomer with the predicted
signs of the chemical shift differences matching the
experimental data is identified. The same absolute con-
figuration is assigned to the unknown sample.

An additional experiment was performed by changing
the composition of the training and test sets. A new test
set was defined with structures 53, 54, 55, and their
enantiomers, while the training set consisted of the
remaining compounds. The structures in the test set were
chosen as they have quite unique structural features.
CPG NNs were trained on the basis of code nr. 24 and
selection of variables was again performed by genetic
algorithms. The 12 chemical shift differences of the test
set were correctly predicted.

3.3. Quantitative Prediction of Chemical Shift
Difference of Chiral Alcohols in Bidentate Chiral

TABLE 3. CPG NN Prediction of NMR Behavior in
Chiral Solvents for the Training and Test Sets Using as
Input Either Code 24 or a Selection of Values from Code
24

correct prediction for
the training set

(74 atoms)

correct prediction
for the test set

(20 atoms)

aCDCC 68 (91.9%) 17 (85%)
aCDCC (subset)a 72 (97.3%) 16 (80%)
aCDCC_2 68 (91.9%) 20 (100%)
aCDCC_2 (subset)a 70 (94.6%) 20 (100%)

a A subset of code 24 was selected by genetic algorithms.

FIGURE 8. Representation of the output weights of a 9 × 9
CPG NN after training with 74 atoms encoded by aCDCC_2
descriptors. After the training, the 20 atoms of the test set
were also mapped for classificationstheir labels include an
“n” if the experimental chemical shift difference is negative
or a “p” if it is positive; an “L” indicates an atom on the left
side of the molecule and “R” represents an atom on the right
side of the molecule as represented in Figure 3; “f” is for
compounds shown in Figure 3 and “i” for their enantiomers.
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Solvents (R, R)- and (S, S)-BMBA-p-Me. Encouraged
by the good predictions of the sign of chemical shift
differences, we tried to further predict their quantitative
values. The same series of 90 chirality codes was screened
as in section 3.2. The only difference is that the sign of
chemical shift difference was replaced by its actual value
shown in Figure 3, and now two more cases were included
in the training set with a chemical shift difference of zero.
The same test set was used.

The best three codes for aCDCC and aCDCC_2 are
shown in Table 4. Judging by the r2 value, and also by
the stability of the predictions in the five networks, code
24 was again chosen as the best, both for aCDCC and
aCDCC_2. The networks trained with these codes were
tested with the independent test set (Table 5).

In a similar way to section 3.2, selection of variables
was performed with genetic algorithms. The results for
the networks trained with the obtained subsets are also
shown in Table 5. Chirality codes aCDCC_2 were again
better than aCDCC in the independent test, and selection
of descriptors further improved the predictions while
building more compact modelss10 variables were se-
lected in each case.

Good correlations were observed between the experi-
mental and calculated chemical shift differencessr2 )
0.839 for the training set and r2 ) 0.936 for the test set,
Figure 9. These are particularly remarkable considering
the narrow range of chemical shift differences (ca. 0.09
ppm in 13C NMR spectra). It can also be seen that the
sign of the chemical shift difference was correctly pre-
dicted for all the cases in the test set, and for all but six
examples in the training set. The six wrong cases fell
near the axes, and they include the four cases wrongly
predicted in the qualitative approach (see section 3.2).

Quantitative prediction of the chemical shift difference
can assist in the assignment of relative configuration. For
example structures 46 and 47 are diastereoisomers. They
have the same configuration of the carbon atom bonded
to the hydroxyl group, and the two atoms adjacent to this
chiral center have the same sign in 46 and 47. However,
the chemical shift differences are quantitatively different

in the two diastereoisomers due to the different config-
uration of the second chiral center. Reliable quantitative
predictions would assign the relative configuration of the
second chiral center. The relatively small size of the data
set however precludes further experimentation on that
direction.

4. Conclusion

An automatic system was developed on the basis of
chirality codes, which integrates available 1D NMR data,
builds models, and makes accurate predictions about
chiral NMR properties without human definition of
explicit rules. Selection of variables using genetic algo-
rithms was useful for refinement of prediction ability and
for reducing the size of the models.

TABLE 4. CPG NN Quantitative Prediction of NMR Behavior in Chiral Solvents for the Training Set (Results
Obtained with the Best Codes)

code no. aCDCC (r2)a code no. aCDCC_2 (r2)a

36 0.803 24 0.774
(0.581, 0.463, 0.667, 0.705, 0.733) (0.681, 0.761, 0.752, 0.764, 0.737)

24 0.738 28 0.763
(0.661, 0.746, 0.703, 0.745, 0.674) (0.711, 0.637, 0.694, 0.697, 0.691)

35 0.728 23 0.750
(0.512, 0.400, 0.686, 0.639, 0.648) (0.707, 0.672, 0.670, 0.718, 0.704)

a r2 value for the training set (76 atoms). The correlations obtained by the ensemble of five CPG NNs are displayed together with the
five individual results (within parentheses).

TABLE 5. CPG NN Quantitative Prediction of NMR
Behavior in Chiral Solvents for the Training and Test
Sets Using as Input Either Code 24 or a Selection of
Code 24 Values

r2 (training set) r2 (test set)

aCDCC 0.738 0.754
aCDCC (subset)a 0.828 0.743
aCDCC_2 0.774 0.865
aCDCC_2 (subset)a 0.839 0.936
a A subset of code 24 was selected by genetic algorithms.

FIGURE 9. Quantitative prediction of chemical shifts differ-
ence (ppm) in two enantiomeric solvents for (a) training set
and (b) test set.
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Atomic chirality codes were shown to describe the
chirality of an atom’s environment in a way that can be
correlated with its NMR properties in chiral solvent
BMBA-p-Me.

In the two applicationssmodeling of chemical shift
after covalent bonding to (R)-MTPA and modeling of
chemical shift in chiral solventsscorrect predictions were
achieved for independent test sets. In the second applica-
tion, quantitative predictions could be obtained with
r2 ) 0.936.

This work is a contribution to the assignment of
absolute configuration from NMR data, particularly for
its implementation in automatic systems.
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